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Overview

Many systems, such as acoustic noise and structural vibrations are distributed in
space. (See Figure 1.) Other applications include control of diffusion (such as
heating) and welding. The location of control actuators, and also the sensors, is a
variable the design of a control system. The fact that controlled system performance
depends on actuator location has been known for some time, but actuator/sensor
location has not previously been systematically addressed. Analysis of the best
locations for actuators and sensors is important for several reasons. Some actuators,
such as piezo-electric actuators, commonly used in control of structures, are difficult
to move once they have been attached to a structure. Furthermore, for problems
with multiple actuators, there are a huge number of possible locations. Thus, a “trial
and error” approach is either impossible, or else is unlikely to lead to locations that
are close to optimal.

A mechatronic approach where controller design is integrated with actuator location
was used. The overall aim of this project is the integration of controller design
and actuator/sensor location. The models for these systems are partial differential
equations (PDE’s). Approximations to the governing PDE, often of very high order,
are required and this complicates both controller design and optimization of the
actuator locations. However, improvements in actuator/sensor location will lead to
improved performance of a number of controlled systems.

Different objectives require different cost functions and lead to different algorithms
as well as conditions for computation. If reducing the response to the initial condi-
tion is of concern, a linear quadratic (LQ) objective is appropriate. The presence of
disturbances leads to different objectives. If the disturbance is known, then the ob-
jective is to minimize the H2-norm of the output. A disturbance with known spatial
distribution, but unknown frequency content leads to an H∞-optimal problem. The
theory for optimal actuator location, for all these controller design objectives, along
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with assumptions necessary for the use of approximations in calculations was com-
pleted. Algorithms for calculating linear-quadratic (including H2-) and H∞ optimal
actuator locations were developed.

In the case of a linear-quadratic (and H2-) cost, the problem was formulated as a
convex optimization problem. Comparision of the algorithm against the popular
genetic algorithm showed that the new algorithm is more accurate and considerably
faster. The case of an H∞-cost was very challenging. Since derivative information
is unavailable, a derivative-free method was used. It was combined with a game-
theoretic algorithm for solving designing controllers for large systems developed in
the previous year and tested with positive results.

The LQ-optimization algorithm was implemented for a beam with piezo-electric
patches, both numerically and in experiments. Since full state feedback is not pos-
sible in a lab, the optimal location of the laser sensors was obtained using duality
and the LQ-optimization algorithm. The experiment demonstrated dramatically
improved performance at optimal over non-optimal actuator locations.

A number of simulation studies were carried out to investigate how the optimal
actuator location is affected by the choice of cost function. Controllability is a very
popular criterion. It is numerically not reliable however. Furthermore, it was found
to lead to locations that were considerably worse than those selected by LQ, H2 or
H∞-costs. Even within these cost criteria, different criteria generally led to different
predictions of the optimal location. The location and spatial distribution of the
disturbance affects the optimal actuator location. Use of the optimal location for a
given situation led to better performance, without a significant increase in overall
control effort.

Controllability

Controllability is a very common actuator location criterion in the literature. Since
a system is controllable if and only the controllability grammian Lc(r) is positive
definite, it seems reasonable to maximize controllability by maximizing the smallest
eigenvalue.

However, there are serious issues with using controllability as a criterion for actuator
location. Controllability c(r) = λmin(Lc(r)) versus actuator location is shown in
Figure 3. The controllability of the system modelled using the first 10 modes is
very different from that using the first 5 modes. Points of high controllability for 5
modes can be almost uncontrollable for the model with 10 modes. As the number
of modes considered increases, there will be more points with zero controllability.
The fundamental issue is that even though it is possible to select actuator locations
and widths that yield a controllable system and so Lc(r) is invertible and all the
eigenvalues of Lc(r) for the original partial differential equation model are positive,
the lower bound on the eigenvalues is 0 [Curtain & Zwart, 1995]. Thus, although
the controllability grammian Lc may be positive definite for each approximation
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(a) Beam Vibrations (b) Acoustic Noise in Duct

Figure 1: In control of systems that are distributed in space, there is generally a
choice of where to place the actuators (and sensors). This selection can be regarded
as part of the controller design. (Apparatus at University of Waterloo)

order, the smallest eigenvalue will tend to 0 as approximation order increases. This
behaviour is typical of PDE models. To illustrate this point, a plot of controllability
versus the number of modes for a fixed actuator location is shown in Figure 2.

In the next section, a criterion for actuator placement is explicitly considers the
controlled system performance is analyzed. It is shown that this approach yields
better controlled system performance than using controllability as a criterion.

Linear-Quadratic Control

If the aim of the controller is to reduce the system’s response to initial conditions,
while including a cost on the control, a very common and appropriate criterion for
controller design is linear-quadratic (LQ) control. The design problem is to find a
controller u to achieve

min
u∈L2(0,∞;U)

∫ ∞
0

〈Cz(t), Cz(t)〉+ 〈u(t), u(t)〉dt︸ ︷︷ ︸
Jr(u,z0)

(1)

subject to
ż(t) = Az(t) +B(r)u(t), z(0) = z0. (2)

where C ∈ L(Z, Y ), A with domain D(A) generates a strongly continuous semigroup
S(t) on a Hilbert space Z (the state space), B(r) ∈ L(U ,Z) and U , Y are Hilbert
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Figure 2: Controllability versus number of modes for a simply supported beam, with
the actuator fixed at x = 0.11. Regardless of the choice of actuator location, the
controllability measure c(r) converges to 0 as the number of modes increases.
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Figure 3: Controllability of the first 5 and 10 modes versus actuator location for a
simply supported beam. Points of high controllability for 5 modes can be almost
uncontrollable for the model with 10 modes.
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spaces (usually finite-dimensional). The parameter r indicates the dependence of
the control operator B(r) on the actuator locations r. Suppose that there are M
actuators, each of which may lie in some set Ω so that r ∈ ΩM . For each r, the
optimal cost is 〈Π(r)z0, z0〉 where Π(r) solves an operator algebraic Riccati equation
(ARE) [Curtain&Zwart, 1995]. We may choose r to minimize response to the worst
initial condition:

max
z0∈H
‖z0‖=1

min
u∈L2(0,∞;U)

Jr(u, zo) = max
z0∈H
‖z0‖=1

〈Π(r)z0, z0〉

= ‖Π(r)‖.

The cost or performance for each actuator location is µ(r) = ‖Π(r)‖ and the opti-
mization problem is therefore

µ̂ = inf
r∈Ωm

‖Π(r)‖.

If the initial condition is regarded as random, then the cost should be chosen differ-
ently. For example, if it is random with zero mean and variance V , the appropriate
cost to minimize is TrV

1
2 Π(r)V

1
2 [Morris, 2011]. Studies conducted as part of the

research effort showed that these different criteria in general lead to different optimal
actuator locations [12].

The solution to the operator ARE on the state space cannot generally be calculated.
It is approximated by the solution to a finite-dimensional ARE. Even for fixed actu-
ator location, a set of assumptions in addition to those required for simulation are
needed to ensure convergence of controller design. See, for example [Morris, 2009].
Rather than reproduce the list of assumptions here, we refer to them henceforth as
the standard assumptions for approximations. However, examples show that even
if Πn (at a fixed actuator location) converges strongly to Π, the optimal cost and
actuator location of the approximations may not converge to the optimal cost and
location. In general, in addition to the conditions required for strong convergence
of Πn, the input operator B and cost C should be compact [Morris,2011]. This as-
sumption may be weakened if the underlying dynamics involve an analytic semigroup
[Morris, 2011]. Conditions guaranteeing (1) well-posedness of the optimal actuator
location problem and also (2) the validity of calculations using approximations to
the PDE (2) were obtained [Morris,2011].

These results, like most results on the use of approximations in controller design
for systems with partial differential equation models, assume that the control and
observation operators are bounded. In most models, these operators are indeed
bounded, if actuator/sensor dynamics are included. The major exception is control
of structures with piezo-electric patches. Modelling of these systems with magnetic
effects has led to the conclusion that these structures do have bounded control
operators, if magnetic effects are included and current control, rather than the
usual voltage control, is used [9, 10, 11]. Experiments have previously indicated that
current control leads to considerably reduced hysteresis over voltage control; see for
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example, [Main&Garcia,1997]. This research further supports the use of current-
controlled piezo-electrics. Also, although magnetic effects have a small effect on the
dynamics, they affect the control properties.

The remaining problems in linear-quadratic control were computational: obtaining
an algorithm for the calculation of optimal actuator locations and corresponding
controller that can be used for systems that may require large-order approximations.
The LQ- cost function is differentiable with respect to the actuator locations and
so gradient-based methods can be considered. However, even though the optimal
LQ control problem is strictly convex, the optimal actuator location problem in
general has multiple local minima; see for example [Geromel,1989],[Morris,2011].
However, if the possible actuator locations are discretized by M possible locations,
and whether there is an actuator is at a particular location is identified by a 0 or
a 1, then the resulting problem is convex in the larger space RM [Geromel,1989].
A secondary advantage to this formulation is that it explicitly prevents clustering
of actuators at a single point. However, there are now a much larger number of
variables than in the original problem.

An algorithm to find LQ-optimal actuator location, using the convex reformulation
of the problem, was developed [2]. This algorithm was successfully implemented
on a number of examples [1, 2]. In comparisons of this algorithm with the popular
genetic algorithm, the new algorithm found locations with better performance than
the genetic algorithm, and was about 100 times faster. This improvement in speed
is critical for problems requiring high-order approximations.

Results for a uniform simply supported beam with a single actuator are shown in
Figure 4. We would expect the optimal location for the single actuator to be at
the centre. However, the optimal location is slightly off-centre. Figure 4b compares
the performance of the controlled system with the actuator at the optimal location
to that with the actuator at the centre. Optimal location of the actuator yields
considerably superior performance. This simple example illustrates not only the
sensitivity of performance to actuator location; but also the fact that, even for
a simple example, intuition does not always lead to the best actuator placement.
(Modal analysis reveals that all the odd-numbered modes have a node at the centre.
Thus, although the centre is best if only the first mode is considered, an off-centre
location picks up the other modes while still using most of the energy in the first
mode.)

In addition to the simulations, an experiment using the cantilevered beam shown
in Figure 1a was conducted [2]. Two non-contact laser sensors were used to mea-
sure deformations and were used as inputs to a Luenberger observer. The optimal
location of the sensors were chosen by solving a dual problem to the control prob-
lem. The optimal sensor locations are indicated in Figure 5. To study the optimal
actuator location problem 4 patches were attached to the beam surface as shown
in Figure 5. In each experiment only two actuators are activated to suppress the
beam’s vibration. The optimal location of two actuators on the beam are positions 1
and 2 as shown in Fig. 5. As illustrated by Fig. 6, placing actuators at the locations
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(a) Optimal location

 

 
 

(b) Comparision of response with actuator at optimal location to that obtained
with actuator at the centre.

Figure 4: LQ-optimal actuator location of a single actuator on a simply supported
beam. The optimal actuator location is slightly off-centre, not at the centre as would
be expected. Figure (b) shows that the optimal location yields considerably better
system performance than if the actuator is placed at the centre.

selected by the algorithm leads to much shorter settling times than if other locations
are used.

Comparision of different cost functions

Plots of the normalized LQ-cost, for a random initial condition, versus actuator
location for various weighting matrices Q and R are shown in Figure 7. Optimal
actuator location depends on the weighting matrices Q and R. As R decreases, that
is the state cost is increasingly weighted more than the control, the optimal actuator
location moves towards x = 0.4 (or x = 0.6). As R increases, that is the control
cost is increasingly weighted more than the state, the optimal actuator location
converges to the centre 0.5. For heavily weighted control cost, the best actuator
location (the centre) is a point of minimum controllability. A similar pattern is seen
if the objective is to minimize the response to the worst initial condition (Figure
8). If the state is heavily weighted, the centre is a poor spot for the actuator. This
is likely reflecting the fact that although the most significant mode, the first mode,
has a peak at the centre, and the centre is a good spot for controlling this mode,
the odd-numbered modes have nodes at the centre and can’t be controlled with an
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Figure 5: Cantilevered beam showing optimal actuator locations (1 &2 ) as well
as other actuator locations. The optimal sensor locations for 2 sensors are also
indicated.
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Figure 6: Experimental measurements of tip vibrations with controlled system with
different actuator locations. Considerably smaller settling time is obtained with the
actuators placed at the locations selected by the algorithm.

actuator placed there.

To determine whether the improvement in performance was accomplished by in-
creased control cost, the control signal with the optimal LQ state feedback controller
at the LQ-optimal location, and also at a non-optimal location was examined with
different initial conditions. For weighting matrices Q = I and R = 0.01, and a
minimum variance LQ-cost (with V = I), a plot of the L2 norm of the control signal
versus actuator location for each initial condition is shown in Figure 9(a). Similarly,
a plot of the L∞ norms is shown in Figure 9(b). The initial conditions used are:
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(b)

Figure 7: Normalized inear-quadratic cost E[Jmin(r)] for random initial condition
with variance V = I, versus actuator location for different weighting matrices Q
and R.
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(b)

Figure 8: Normalized linear-quadratic cost ‖Π(r)‖ versus actuator location for dif-
ferent weighting matrices Q and R.

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

actuator location

L 2 n
or

m
 o

f c
on

tr
ol

 s
ig

na
l

 

 
x

0, 1

x
0, 2

x
0, 3

x
0, 4

x
0, 5

(a) L2 norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

actuator location

L in
f n

or
m

 o
f c

on
tr

ol
 s

ig
na

l

 

 
x

0, 1

x
0, 2

x
0, 3

x
0, 4

x
0, 5

(b) L∞ norm

Figure 9: Norms of the control signal versus actuator location for different initial
conditions. Cost is linear-quadratic with Q = I, R = 0.01.

x0,1 =
[
1 1 1 1 1 1 1 1 1 1

]T
(3)

x0,2 =
[
1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6

]T
(4)

x0,3 =
[
−1 1 −1 1 −1 1 −1 1 −1 1

]T
(5)

x0,4 =
[
1 0 0 0 0 0 0 0 0 0

]T
(6)

x0,5 =
[
0 1 0 0 0 0 0 0 0 0

]T
(7)

From Figure 9(a), it is observed that poor actuator locations (which correspond to
locations with zero controllability) result in control signals with L2 norm at a local
minimum for initial conditions x0,1, x0,2 and x0,3. This is not always the case for
x0,4 and x0,5. An explanation for this is that for x0,4 and x0,5, not all modes have
been excited. A similar pattern can be observed in Figure 9(b) for the L∞ norm,
though not as strong.

Figures 10 and 11 display the deflection at the beam centre and the control signal
for two different initial conditions. The LQ-optimal location yields better response
than the location with maximum controllability, with no apparent increase in the
control effort. These patterns can be observed using different weighting matrices
Q and R and different examples. There is no apparent relationship between lo-
cations with high controllability and LQ-optimal actuator locations. Also, at the
LQ-optimal actuator locations, the L2-norm of the control signal tends not to be
large or small compared to other locations. However, it should be noted that the
L∞ norm is sometimes large. Therefore, as always, care should be taken to avoid
possible saturation of control signals when placing actuators.
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(a) deflection at centre of beam
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(b) control signal

Figure 10: Initial condition x0,2. Deflection at centre of beam and control signal for
actuator at 0.254 (LQ optimal actuator location) and 0.1 (optimal controllability).
Q = I and R = 1. Both the deflection and control signal are smaller for an
actuator placed at the LQ-optimal actuator location than at the spot of optimal
controllability.
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(a) deflection at centre of beam
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Figure 11: Initial condition x0,3. Deflection at centre of beam and control signal for
actuator at 0.254 (LQ optimal actuator location) and 0.1 (optimal controllability).
Q = I and R = 1. Both the deflection and control signal are smaller for actuator
at the LQ-optimal actuator location than at the spot of optimal controllability.
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Disturbances

In many problems, the aim is to reduce the response to an exogenous disturbance.
The model (2) becomes

ż(t) = Az(t) +B(r)u(t) +Dv(t). (8)

where D ∈ L(W,Z) and W is a separable Hilbert space. Suppose that the distur-
bance v(t) ∈ L2(0,∞;W ) is white noise. (The more general situation where the
disturbance is fixed, but not white noise, is handled by absorbing the description
of the disturbance into the plant model and the subsequent treatment is identical.)
For C ∈ L(Z, Y ), R ∈ L(U,U), where R is coercive, define the cost

y(t) =

[
Cz(t)
Eu(t)

]
. (9)

Since it is assumed that all states z are available to the controller, this is known
as the full information problem. The standard assumption that E∗E is invertible
will be made so that the control cost is non-singular. To simplify the formulae, it
is also assumed that E∗C = 0 and E∗E = I. This cost is then identical to the
linear quadratic cost (1) with Q = C∗C and R = E∗E = I. The standard problem
is to find the control law u so that ‖y‖2 is minimized. The difference between this
problem and the LQ problem is that in LQ-control the aim is to reduce the response
to the initial condition z(0) with disturbance v = 0 while we now wish to reduce
the response to the disturbance v and set z(0) = 0. Since the L2-norm of y equals
the H2-norm of the Laplace transform of y, this is known as an H2-controller design
problem. The relevance of the H2-norm is also that, letting G indicate the transfer
function, ‖G‖2 is the spectral power density, or expected power, of the output of a
system subject to unit variance white noise (a signal with uniform spectral density).
The following theorem is an extension of the analogous result for finite-dimensional
systems.

Theorem 1 [4] Consider the linear system (8) with cost (9) and assume that (A,B)
is stabilizable. The H2-optimal control is the state feedback

u(t) = −B∗(r)Π(r)z(t)

where Π(r) solves

A∗Π(r) + Π(r)A− Π(r)B(r)R−1B∗(r)Π(r) + C∗C = 0. (10)

The optimal cost is
Tr(D∗Π(r)D)

and the optimal norm of the closed loop transfer function is√
Tr(D∗Π(r)D).

14



The H2-optimal actuator location problem is thus to find the actuator location r̂
that minimizes

Tr(D∗Π(r)D).

Since the optimal cost relies on the norm of the solution to a LQ-ARE (10), well-
posedness of this problem follows using techniques and results from the LQ-case [4].
Mathematically, the problem is identical to that of minimizing the LQ-cost when
the initial condition is random with variance D∗D. If B(r) is a continuous function
of r, both the optimal actuator location problem with a fixed disturbance location,
and the problem where the disturbance is unknown, lead to well-posed optimization
problems.

Define the optimal cost µ̂ = infr∈ΩM 〈D,Π(r)D〉 = 〈D,Π(r̂)D〉 where r̂ is an optimal
actuator location. Provided that an approximation scheme is found so that Πn → Π
then µn → µ. Convergence of the optimal actuator location is also implied.

Theorem 2 [4] Consider the control system (8) where D is a compact operator and
assume that for any r ∈ ΩM ,

lim
s→r
‖B(s)−B(r)‖ = 0,

and that the standard assumptions for approximations are satisfied by (An, Bn(r), Cn).
Then the approximating optimal costs converge to the exact optimal cost, that is

µ̂ = inf
r∈ΩM

Tr(D∗Π(r)D) = lim
n→∞

inf
r∈ΩM

Tr(D∗nΠn(r)Dn),

Also there is a subsequence of approximating actuator locations r̂m so

µ̂ == lim
m→∞

Tr(D∗Π(r̂m)D); (11)

that is, performance arbitrarily close to optimal can be achieved with the approxi-
mating actuator locations.

Consider a single disturbance so that Dv = b1v for some b1 ∈ Z. If the spatial
distribution of the disturbance, b1, is not known then the objective is to find the
actuator location that minimizes the H2-cost over possible disturbance distributions:
The problem now becomes that of choosing the actuator location r to minimize the
closed loop response to the worst spatial disturbance distribution; that is

inf
r∈ΩM

sup
b1∈H
〈b1,Π(r)b1〉 = inf

r∈ΩM
‖Π(r)‖.

Thus, if the spatial distribution of the disturbance b1 is unknown, the problem is
to minimize ‖Π(r)‖ over the actuator location r. This is identical to minimizing
the LQ-cost with respect to the worst initial condition [4]. Letting r̂ indicate the
optimal actuator location, the worst disturbance is the eigenfunction corresponding
to the largest eigenvalue of Π(r̂).
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A number of numerical tests were done on structures [3, 4]. These indicate that the
best actuator location depends on the type of disturbance and its location.

If the disturbance v is not known, then the problem becomes one of minimizing
the response to the worst disturbance. This can be shown to be equivalent to
minimizing the H∞-norm of the closed-loop transfer function, and so this controller
design approach is known as H∞-controller design. The basic H∞-controller design
problem is to find a stabilizing controller so that (8) is stabilized with attenuation
γ: ∫ ∞

0

‖y(t)‖2dt < γ2

∫ ∞
0

‖v(t)‖2dt.

The norm of the map from v to y is equal to the H∞-norm of the transfer function
which is why this type of control objective is generally known as H∞-controller
design. This problem is solvable if and only if there exists a nonnegative, self-adjoint
operator Π on Z solving the algebraic Riccati equation (ARE)

(
A∗Π + ΠA− Π

(
B(r)B(r)∗ − 1

γ2
DD∗

)
Π + C∗C

)
z = 0, z ∈ D(A), (12)

where A− B(r)B(r)∗Π + 1
γ2DD

∗Π generates an exponentially stable semigroup on

Z [Bernhard & Bensoussan 1993],[Keulen,1993].

Often, the optimal disturbance attenuation is sought. The cost µ(r) is the small-
est attenuation γ for which for which a stabilizing solution to (12) exists. In this
case, unlike LQ- and H2 optimal control, an iterative procedure to find the opti-
mal γ and hence µ(r) is required. The problem here is to calculate not only the
optimal controller, but also the actuator location(s) that minimize the H∞-norm of
the controlled system. Optimal disturbance attenuation as a function of actuator
location is the cost function. The following theorem states conditions under which
this problem is well-posed; and furthermore for when approximations can be used
to find the optimal locations and corresponding controller.

Theorem 3 [6] If

• for any r0, limr→r0 ‖B(r)−B(r0)‖ = 0,

• (A,B(r)) are all stabilizable, (A,C) is detectable

• B and D are compact operators,

• (An, [Bn(r) Dn], Cn) satisfies the standard assumptions on approximations for
controller design

then, letting µ(r) = inf γ(r), µ̂ = inf
r∈Ωm

µ(r),

• there exists an optimal actuator location r̂ so that µ̂ = µ(r̂),
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• µ̂ = limn→∞ µ̂n,

• and there exists a subsequence {r̂m} of {r̂n} such that µ̂ = limm→∞ µ(r̂m).

Note that unlike linear-quadratic design, the penalty C on the state doe not need
to be compact.

The next task was the construction of an algorithm to calculate the optimal actua-
tor locations, and also the controller, to achieve the optimal attenuation. This was
complicated by several factors. First, there is no generally accepted algorithm for
solution of large H∞-AREs, particularly when the system is in descriptor form, as is
the case for finite-element approximations. An efficient, stable algorithm that can
be used for systems of very large order and also to calculate optimal attenuation
was developed [7]. Furthermore, calculation of the cost function µ(r) requires the
solution of many Riccati equations, and each such calculation is computationally
intensive. Also, the cost µ(r) is a non-convex function of the locations r and it
appears to be non-differentiable. In order to avoid the problem of lack of differ-
entiability, directional direct search [Conn, 2009, chap. 7] was used. Directional
direct-search is a derivative-free method that samples the objective function at fi-
nite number of points and searches for a better function value at each iteration.The
decisions are made based on function values without any explicit or implicit deriva-
tive calculation. There are several advantages to this method for the calculation of
H∞-optimal actuator location. One is that the function evaluations may be done in
parallel, which is natural for optimal actuator location, and speeds up convergence
in a multi-processor architecture.

Another advantage to a directional direct search method for calculation of optimal
attenuation is that a simpler, so-called surrogate function may be used to replace
most cost function evaluations. Calculation of the cost function, the optimal at-
tenuation µ(r) with actuators at r, is very computationally intensive. However,
the actual attenuation achieved by a given controller (for some attenuation γ) is
generally quite close to the optimal attenuation. Also, the optimal attenuation is
a continuous function of the actuator location [6]. Thus, the actual attenuation
achieved with the controller from the previous iteration is used as a surrogate func-
tion sm(·). The surrogate function is used to order the candidate points. The cost
at candidate points is then evaluated in the given order using the actual cost func-
tion µ. Since the actual optimal attenuation is close to the surrogate function value,
usually the first one or two points evaluated reduces the current cost, allowing the
optimization procedure to progress. The use of a surrogate function resulted in
savings of computation time of 200-2000% [6].

Testing the algorithm with several common examples showed that even for simple
examples, the best location does not always agree with intuition [5, 6]. Consider
a simply supported beam with disturbances at 0.25 and 0.75 of the total length
and a single actuator. The centre of the beam would seem to the best location for
the actuator. In fact, placing the actuator at either of the disturbance locations
improves the attenuation nearly 8 times over placing it at the centre. (See Figure
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Figure 12: H∞-optimal placement of a single actuator for a simply supported beam
with two disturbances. The optimal location yields nearly 8 times better attenuation
of disturbances over placing the actuator at the centre. Placing the actuator at the
same location as one of the disturbances yields a closed loop H∞-norm of 15 versus
118 if the actuator is placed at the centre.

12) For another problem, placement of 2 actuators when the disturbances are at
x = 0.4 and x = 0.9, the optimal actuator locations were 0.23 and 0.58. Placing
the actuators at these locations yielded 15% better attenuation than collocation
of the actuators with the disturbances. Optimal actuator placement for control of
diffusion on an irregular domain with spatially varying diffusivity, shown in Figure
13, was also investigated. The optimal actuator location is not towards the centre,
but in a spot where the diffusivity is low. This suggests that diffusivity is a factor
in actuator location for systems with variable diffusivity.

Conclusions

A number of theoretical and numerical results have been obtained. For optimal ac-
tuator location, compactness is important for well-posedness of the problem and for
convergence of approximations. The original problem needs to be properly formu-
lated, and a suitable approximation scheme chosen in order to obtain useful results
from numerical calculations. Furthermore, the optimal actuator location depends
on the choice of cost function so the cost function needs to be chosen appropriately.
The popular choice of maximizing controllability is not numerically reliable, and
also does not generally lead to controlled systems with the best performance.

Algorithms for optimal actuator placement using LQ, H2 and H∞-cost criteria were
developed and successfully tested on a number of examples. The algorithm for H∞-
optimal actuator is the first algorithm developed for problems of this type. The
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Figure 13: H∞-optimal actuator location for a uniformly distributed disturbance
in a diffusion problem. The diffusivity is spatially dependent and the region is
irregular. The optimal actuator location is not at the centroid of the region, but at
(3.1, 3.35). This is a region of low diffusivity indicating that diffusivity is a factor
in actuator efficacy for diffusion problems.

linear-quadratic algorithm was compared to the popular genetic algorithm and was
100 times faster on the examples tested. Experimental results on a beam corroborate
the simulations.

The use of these algorithms, both in simulations and on an experiment have shown
two important conclusions: (1) the best actuator locations do not always agree with
physical intuition, even for simple examples, and (2) controlled system performance
is strongly dependent on actuator location. Planned future work is to apply the
algorithms to realistic applications in several space dimensions, such as space struc-
tures, aircraft fuselage, building dynamics and fluid problems. There is a natural
extension of this research to sensor location in order to handle the usual situation
where the state must be estimated. Estimation is also of interest in a number of
situations where control may not be required. The results for actuator location in-
dicate that significantly better estimation can be obtained with proper placement
of sensors, but these questions need to be investigated.
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Student Theses

Dhanaraja Kasinathan, H∞-optimal actuator location
PhD (Applied Mathematics), 2012.

Abstract:There is often freedom in choosing the location of actuators on systems
governed by partial differential equations. The actuator locations should be selected
in order to optimize the performance criterion of interest. The main focus of this
thesis is to consider H∞ performance with state-feedback. That is, both the con-
troller and the actuator locations are chosen to minimize the effect of disturbances
on the output of a full-information plant.

Optimal H∞-disturbance attenuation as a function of actuator location is used as
the cost function. It is shown that the corresponding actuator location problem is
well-posed. In practice, approximations are used to determine the optimal actuator
location. Conditions for the convergence of optimal performance and the correspond-
ing actuator location to the exact performance and location are provided. Examples
are provided to illustrate that convergence may fail when these conditions are not
satisfied.

Systems of large model order arise in a number of situations; including approxima-
tion of partial differential equation models and power systems. The system descrip-
tions are sparse when given in descriptor form but not when converted to standard
first-order form. Numerical calculation of H∞-attenuation involves iteratively solv-
ing large H∞-algebraic Riccati equations (H∞-AREs) given in the descriptor form.
An iterative algorithm that preserves the sparsity of the system description to calcu-
late the solutions of large H∞-AREs is proposed. It is shown that the performance
of our proposed algorithm is similar to a Schur method in many cases. However,
on several examples, our algorithm is both faster and more accurate than other
methods.

The calculation of H∞ optimal actuator locations is an additional layer of opti-
mization over the calculation of optimal attenuation. An optimization algorithm to
calculate H∞ optimal actuator locations using a derivative-free method is proposed.
The results are illustrated using several examples motivated by partial differential
equation models that arise in control of vibration and diffusion.
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Thesis can be downloaded from:
https://uwspace.uwaterloo.ca/bitstream/handle/10012/6732/Kasinathan Dhanaraja.pdf?sequence=1

Neda Darivandi, Optimal Active Control of Flexible Structures Applying Piezo-
electric Actuators.
PhD (Mechanical and Mechatronics Engineering), 2013

Abstract: Piezoelectric actuators have proven to be useful in suppressing distur-
bances and shape control of flexible structures. Large space structures such as solar
arrays are susceptible to large amplitude vibrations while in orbit. Moreover, Shape
control of many high precision structures such as large membrane mirrors and space
antenna is of great importance. Since most of these structures need to be ultra-light-
weight, only a limited number of actuators can be used. Consequently, in order to
obtain the most efficient control system, the locations of the piezoelectric elements
as well as the feedback gain should be optimized. These optimization problems are
generally non-convex. In addition, the models for these systems typically have a
large number of degrees of freedom.

Researchers have used numerous optimization criteria and optimization techniques
to find the optimal actuator locations in structural shape and vibration control. Due
to the non-convex nature of the problem, evolutionary optimization techniques are
extensively used. However, One drawback of these methods is that they do not use
the gradient information and so convergence can be very slow. Classical gradient-
based techniques, on the other hand, have the advantage of accurate computation;
however, they may be computationally expensive, particularly since multiple initial
conditions are typically needed to ensure that a global optimum is found. Conse-
quently, a fast, yet global optimization method applicable to systems with a large
number of degrees of freedom is needed.

In this study, the feedback control is chosen to be an optimal linear quadratic regu-
lator. The optimal actuator location problem is reformulated as a convex optimiza-
tion problem. A subgradient-based optimization scheme which leads to the global
solution of the problem is introduced to optimize the actuator locations. The opti-
mization algorithm is applied to optimize the placement of piezoelectric actuators
in vibration control of flexible structures. This method is compared with a genetic
algorithm, and is observed to be faster in finding the global optimum.

Moreover, by expanding the desired shape into the structures modes of vibration,
a methodology for shape control of structures is presented. Applying this method,
locations of piezoelectric actuators on flexible structures are optimized.

Very few experimental studies exist on shape and vibration control of structures.
To the best knowledge of the author, optimal actuator placement in shape control
has not been experimentally studied in the past. In this work, vibration control
of a cantilever beam is investigated for various actuator locations and the effect of
optimal actuator placement is studied on suppressing disturbances to the beam. Also
using the proposed shape control method, the effect of optimal actuator placement
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is studied on the same beam. The final shape of the beam and input voltages of
actuators are compared for various actuator placements.

Thesis can be downloaded from:
https://uwspace.uwaterloo.ca/bitstream/handle/10012/7459/Darivandi Shoushtari Neda.pdf?sequence=1

Interactions/Transitions
The following talks on our results to date were presented.

• “Optimal Actuator Location”, University of Groningen, October, 2013.

• “Optimal Actuator Location”, IFAC Conferenece on Distributed Parameter
Systems, Paris, September, 2013.

• “Comparision of Different Criteria for Actuator Location”, AFOSR Program
reviews, Arlington, August, 2013.

• “Control of Piezo-electric Beams with Magnetic Effects,”SIAM Conference on
Control Theory and Applications, San Diego, CA, July, 2013. (talk given by
A. O. Ozer.)

• “Calculation of H∞-optimal actuator location for distributed parameter sys-
tems”, American Control Conference, Washington, DC, June 2013.

• “Optimal Actuator Location”, University of Alabama, Birmingham, USA,
April, 2013.

• “Computational Issues in Optimal Actuator Location”, SIAM Conference on
Computational Science and Engineering, Boston, USA, February, 2013.

• “H∞-Optimal Actuator Location”, AFOSR Program Reviews, Arlington, Au-
gust 2012.

• “Optimal Actuator Location in Structures” , 8th International Conference on
Differential and Dynamical Systems, Waterloo, Canada, July 2012.

• “Linear-quadratic Optimal Actuator Location in Structures”, American Con-
trol Conference, Montreal, Canada, June 2012.

• “H∞-Optimal Actuator Location”, AFOSR Program reviews, Arlington, Au-
gust, 2013.

• “Numerical method for H∞ control of large regular descriptor system”, Fifth
Ontario Meeting on Systems and Control Theory, Toronto, Canada, May 2012.
(talk given by D. Kasinathan)

• “Optimal Actuator Location”, Fields’ Institute Industrial Optimization Sem-
inar, February, 2012.
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• “Convergence of H∞-Optimal Actuator Locations”, IEEE Conference on De-
cision and Control, Orlando, December 2011. (talk given by D. Kasinathan)

• “Computation of Optimal Actuator Locations”, Workshop on Nonlinear Con-
trol, Monterey, November 2011.

• “LQ-optimal Actuator Location”, AFOSR Program reviews, Arlington, Au-
gust, 2011.

• ‘H∞-Optimal Actuator Locations”, Workshop on Distributed Parameter Sys-
tems, Wuppertal, July 2011.

Also, there have been discussions with several people about possible applications and
extensions of this research. In particular, Ralph Smith at North Carolina State Uni-
versity is interested in whether proper actuator/sensor location, combined with un-
certainty quantification, can reduce the effect of uncertain parameter values. There
are also applications to improving the energy efficiency of buildings via better loca-
tion of HVAC hardware and to locating sensors for estimation of the state of large
lakes and the atmosphere.

AFRL Point of Contact
Fariba Fahroo, Program Manager, Control & Dynamics AFOSR/RSL, (703) 696-
8429.
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